2020年青少年突破挑戰獎(Breakthrough Junior Challenge)由加拿大17歲Maryam Tsegaye以一部3分鐘量子穿隧效應的科普影片,獲得首獎,也贏得了40萬美元高額獎金!
Breakthrough Junior Challenge是一年一度全球性競賽,每年都會邀請全球 13-18 歲學生提供原創影片,解釋數學、生命科學或物理學中具有挑戰性和重要的概念或理論。 獲勝者將獲得 250,000 美元的大學獎學金, 獲勝學生的老師和學校也將受益:為教師提供 50,000 美元,為學校科學實驗室提供 100,000 美元獎金。
來自加拿大麥克默里堡(Fort McMurray)的 Maryam Tsegaye,是 17 歲青少女。她選擇了量子穿隧效應為主題,在 3 分鐘影片中以電玩為例,運用動畫及巧妙的譬喻,說明了量子穿隧的原理以及在日常生活的現象。
我們將影片內容翻譯成中文,也提供英文全文,一起來學習有趣的量子力學吧!
影片來源: Breakthrough
影片中文字幕
黃昱銘 譯
(0:00-0:13)
我在看我哥哥玩這個電子遊戲,他使用了一個作弊碼,讓他的角色能夠作弊穿牆,他將自己推到遊戲中的障礙物上後,按了一些按鈕,然後他的角色就出現在另一邊了。想像一下,如果他能夠在現實生活中穿牆而過?
(0:14-1:10)
想像一下,如果一個人能夠穿牆而過,那會如何?事實證明,在量子層級上,這是可能的。
當我們談到原子構成的基礎層級,也就是量子層級時,奇怪的事情就會發生。首先,所有的次原子粒子都有「雙重性格」——一種是波,另一種是粒子,但它們仍然是同一個實體。當你想知道它們的位置時,它們看起來像粒子;而當你想了解它們的行為時,它們則表現得像波。不過,你不能同時詢問這兩種性格的資訊。基本上,這些粒子有嚴重的「承諾問題」,它們會不守規定、不按照規律出現,這也意味著我們只能猜測它們可能的位置。想像一下,一個電子有兩顆骰子,每顆骰子有六個面。電子擲出的骰子點數決定了它會在直線上的 哪個位置。直到骰子被擲出來之前,我們的電子無法確定自己的位置。記住,它有嚴重的「承諾問題」,所以當電子正在搖骰子的時候,它處於「同時無處不在」的狀態。
而當我們試圖測量它的位置時,這迫使電子擲出骰子,並選擇一個具體的位置。在所有可能的結果中,擲出7的機率會比擲出2或12更高。現實中,電子可能出現的位置性遠遠超過10個地方,因為它不只像兩顆骰子這麼簡單,而是擁有更多可能的組合。
(1:11-2:11)
現在我們可以選擇你的亞原子粒子,因為這就是一種機率波(probability wave)。這個波會告訴我們在某個位置找到一個粒子的機率。比方說,這是我們的電子的機率波,波的尖峰是我們最有可能找到電子的地方,而在波谷裡,我們不太可能在那裡找到它。假設電子正朝著障礙物前進,當它碰到障礙物時,波會反彈,但讓我告訴你一些關於波的事情,它們並不完美,例如,一束光並不能完全從表面反射,會有一小部分光可以穿透表面,因此波將不能夠完全反彈,同理電子波也不會。但有時,當波在勢壘中時,波可以通過勢壘,只是在那裡找到電子的機會會下降很多,但是如果勢壘足夠薄,波可以在它消失之前到達另一側,所以這意味著什麼?記住波告訴我們在那裡找到電子的可能性,這意味著我們有機會可以在勢壘另一側找到我們的電子,一旦它在另一邊,我們可以說電子穿過勢壘,這就是量子穿隧(quantum tunneling),這也就是亞原子粒子可以穿過牆壁的方式。
(2:12-2:59)
好吧,這麼小的基本粒子可以穿過牆壁,但我不能,因為我的身體由超過千萬億個這些量子物質所組成,而這些物體全部穿過牆壁的機率幾乎是不可能的,那麼為什麼量子穿隧很重要呢?這其實是我們活著的原因。量子隧道允許核聚變,這聽起來很熟悉嗎?這就是我們的太陽如何釋放大量能量,使星球上的生命變成可能。那麼,你要如何在家中進行量子穿隧呢?你已經做到了!我們的 DNA 突變的方式就是其中一種方式,以及量子物理學在我們的生物學中表現的其他規則。量子物理學使世界看起來好像在對我們玩作弊碼,但事實並非如此,這就是宇宙的運作方式。也許量子世界告訴我們,當面臨障礙時,我們有很小的機會可以挑戰期望並通過障礙。
影片英文字幕
黃昱銘 |特約編輯 (臺灣大學化學系碩士)
(0:00-0:13)
So I was watching my brother play this video game, and he used a cheat code that let his character do a walk through walls hack. He pushed himself against a barrier in the game, hit some buttons and boom his character appeared on the other side.
(0:14-1:10)
Imagine if he could walk through walls in real life and it turns out. You can at a quantum level. We’re talking on a scale of the stuff that make up atoms, strange things happen at a quantum level. For one thing, all subatomic particles they’ve got split personalities, one personality is a wave and the other one’s a particle, but there’s still one being. When you want to know where they are, they seem like a particle, and when you want to know what they’re doing, they behave like waves, but you can’t ask both personalities at the same time. Basically they’ve got some serious commitment issues, and that means we can only guess where they might be. Imagine an electron has two dice six sides each, what the electron rolls is where it will sit along the line, our electron can’t commit to a position until the dice are rolled. Remember here’s commitment issues, so as our electron is shaking the dice, it’s everywhere at once. Something like us trying to measure its position has to force the electron to let go of the dice, and pick a spot of all combinations getting a 7 is more likely than 2 or 12. In reality, though the electron can be in more than just 10 spots since there are many more combinations than just two dice.
(1:11-2:11)
Now we can pick your sub-atomic particles as this a probability wave. This wave will tell us the odds of finding a particle at that location, say this is our electron’s probability wave, the peals of the wave is where we’re most likely to find the electron, and in the valley’s it’s less likely we find it there. Let’s say the electron is heading towards a barrier, as it hits the barrier the wave bounces off, but let me tell you something about waves, they are not perfect, for example, a beam of light doesn’t perfectly reflect off the surface, a small fraction of light can get through, waves won’t bounce off perfectly, so neither will the electron wave. Sometimes the wave can slip through the barrier when the wave is in the barrier, the chance of finding an electron there goes down by a lot, but if the barrier is thin enough the wave can reach the other side before it dies off, so what does that mean? Remember the wave tells us how likely it is to find the electron there. This means there’s a chance we can find our electron on the other side of the barrier or in there too. Once it’s on the other side, we can say the electron tunneled through the barrier, this is quantum tunneling, and that’s how subatomic particles can walk through walls.
(2:12-2:59)
Okay, so little elementary particles can walk through walls but I can’t, because my body’s made up of more than a quadrillion of these quantum objects, and the odds of all of them tunneling through the wall is practically impossible, so why does quantum tunneling even matter? It’s the reason we’re alive. Quantum tunneling allows nuclear fusion, sounds familiar? That’s how our sun releases huge amounts of energy that makes life on our planet possible. So how can you quantum tunnel at home, you already are! It’s one of the ways our DNA mutates among other rules that quantum physics plays in our biology. Quantum physics make it seem like the world is playing cheat codes on us, but it isn’t. It’s how the universe works. Maybe the quantum world is telling us that when faced with an obstacle there’s a small chance we can defy expectations and reach barriers.