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Abstract

Variational Quantum Eigensolver, simply called VQE, is a method of hybrid quantum-classical
algorithm. The main idea is to train a parametrized quantum circuit by using a classical optimizer
to find the ground state energy or the low excited states of a given Hamiltonian.

1 Introduction

Variational quantum algorithm, as known as VQA, is a process of using classical optimizer to train
a parametrized quantum circuit and finding the optimal parameters of the circuit.[5] It’s similar to
machine learning, both of them have four elements, data, model, cost function and optimizer. The
difference between them is that the model of machine learning is a neural network working on classical
computer, another one is a quantum circuit working on quantum computer. VQE is an example of
VQA, the object is to search the ground state energy or the low excited state of a given Hamiltonian
H.

In our project, we focused on finding the ground state of a Hamiltonian, that is, the lowest eigenvalue.
The core concept of VQE is variational principle which can help us to obtain an upper bound of the
lowest eigenvalue, mathematical interpretation will be introduced in more detail later.

2 Theory

One of the application in variational method of quantum mechanics is VQE. Before using VQE, we
have to understand the mathematical background.
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Figure 1: Simple flow chart of VQE



2.1 Mathematical Background

For a matrix A with eigenvectors |¢);) and corresponding eigenvalues J\;, it holds the relation below
which is the characteristic equation for A.[2]

Alyi) = Ailthi) (1)
Then, if we have a matrix H is Hermitian, the matrix H is equal to its own conjugate transpose.
H=H' (2)

Because the eigenvalue of Hermitian matrix is real, the matrix has a property A; = ;. To calculate
by Quantum Machine, the matrices will be turned into a Hamiltonians. As this property, Hermitian
matrices can be transformed into Hamiltonians. [2]

N
H= Z/\i|1/)i><77[}i| (3)

The \; is the eigenvalue corresponding to the eigenvector [¢;). By matrices, we can explain the
expectation value of H with

(H)y = (Y|H 1) (4)
By Equation (4), we subscribe the expectation value of H as[2]

(H)y = (W[H[Y) = (Y| (Z )\i|¢i><¢i|> i)

=1
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2.2 Variational Principle

The variational principle is the core of VQE. In Quantum Mechanics, the Hamiltonian H is a matrix
which describes the possible states of a physical system. Every state, expressed as eigenvector, has a
corresponding eigenvalue, which represents the energy of the system. The energy value E; for a given
state |1); is actually the expectation value of the Hamiltonian H, like Equation(4) shown.

(Vi H|i) = E; (6)

Define the ground state energy as Fy, which we care the most, since every eigenvalue F; is the upper
bound of Ey, we can rewrite Equation (6). According to this, it is impossible to get an eigenvalue
lower than the ground state energy on VQE.

(Y| H|bi) > Eo (7)

2.3 Ansatz

As the Equation (4) and Equation (5), the second step we have to do is find a wave function, |1);),
which is called ansatz. Using Equation (5), we will get the expectation value. Therefore, finding a
good ansatz is an important job. As a rule, we can normally consider that the ansatz may be cover all
the condition of H we want. For example, if the expectation value of a Hamiltonian is at X-Z plane,
we may use R, Gate as the ansatz.[4] The R, Gate means making a rotation along the y axis. That
is, R, Gate will cover all the X-Z plane. But it also gets some problems. If the expected value of
Hamiltonian we get only at one side, computing all the part of R, Gate is too heavy. The Quantum
computer may not speed up the calculation.



2.4 Expectation Value

The third step, we will get the expected Expectation Value. For example, if we have a Hamiltonian is
Pauli X Gate, and our mission is get the Expectation Value of Pauli X Gate. The representation of
linear algebra is Equation (4). The representation of the matrix is

o 2] ][5 =l ) |5] —as s ®)

With Equation (5), We know the Expectation Value show as

(X)y = (V| X|p) = ZA|¢|¢X1 (9)

Organize the mathematical formula, we have

= (+1) [{Wlox ) + (=1) [(¥lox )P (10)

Where +1 and —1 are eigenvalue of X Gate, 9 is our Ansatz, ¢x is eigenvector of X Gate. The

eigenvec(or Of X Gate are

In quantum computing, we can separate the eigenvalue of X Gate into —= (|0> + 1)) and == (|O> [1)).

These formula can easily express by H|0) and H|1), which H is Hadamard Gate.[1] Therefore7 the
formula turns into
(W [HI0)* — [([H[1)[* = |(Hy|0)[* — [(Hy|1)[? (11)

In Quantum Circuit, it is expressed as passing a wave function, apply the H gate, measure the Expec-
tation Value of |0) and |1), and finally discuss the eigenvalue is 1 or -1.

3 Method

VQE involves four steps. First of all, express the given Hamiltonian in the combination of Pauli
matrices.[3] Second, choose a parametrized wave function as ansatz with initial parameters 6y in
quantum circuit. Third, measure the expectation value E(0) = (9| H |tbp) on quantum computer. The
last, use classical optimizer to obtain the minimum E(0).

In our project, we worked on a given Hamiltonian H in Equation (12). We will demonstrate the steps
of VQE by taking H as an example.

1 0 0 0
0 0 -1 0

H= 0 -1 0 O (12)
0 0 0 1

3.1 Transform the Hamiltonian

For any given Hamiltonian, one can transform into a combination of Pauli matrices.[3] Since we once
knew the method of measuring Pauli matrices, the problems were smoothly solved.

Look at Equation (12), it was not difficult to find that the matrix only has values on diagonal lines.
Luckily, both o, ® 0, and oy ® o, are anti-diagonal matrices, and o, ® o, is a diagonal matrix.
Therefore, we can transform H into the forms of Pauli matrices combinations.

1 1 1 1
H:—§O'x®0'gc*§O'y®0'y+§o'z®az+§l4><4 (13)



3.2 Determine the Ansatz

As mentioned above, we have to design a proper wave function which can cover the lowest state and
improve the efficiency at the same time. To make sure the wave function can find the ground state
energy of a given Hamiltonian, there is a general form of ansatz for the states of two qubits.

[¥) = (U ® U")(CX0,1)(U ® I2x2)]0)[0) (14)

Where U is the general form of a single qubit unitary and C Xy ; is CNOT gate.[7]
Equation (14) obtained by Schmidt decomposition theorem.[8] Since any bipartite quantum state |1))
can be expressed as a general 2-qubit state.

W) =>oa(]1) ®]0)) (15)

By the Schmidt decomposition and the singular value decomposition theorem,[8][9] we can change
Equation (15) into the form of Equation (26) with |a;) = |8;) = |0). Since one can find a unitary
matrix U to rotate the single-state |0) to |1),[7] we can rewrite Equation(15).

) =" 00l Uaal0) @ (Tox2"10))]

= ZaaUaaIZ><2|0>|0> (16)
= X,00)[0)
i,J

According to the first line of Equation (16), one can tell that any 2-qubit state can be formed from two
qubits with state |0) by applying a U gate on one of the qubits, a CNOT gate to create entanglement,
and U gates on both qubits.

Back to our given Hamiltonian in Equation (12), we can define the general form as the ansatz, however,
there are nine parameters in total, which is inefficient for VQE since the unreasonable number of
parameters will slow down the speed of optimizing in classical computer, therefore, design an ansatz
as simple as possible. If we have adequate knowledge in the given Hamiltonian, we can reduce the
numbers of parameters effectively. In our case, we designed the ansatz as

9) = (Ra(0) © Tax2)(CXo,1)(H @ I2x2)|0)[0). (17)

3.3 Measure the Expectation Value

In quantum circuit, after the qubits pass the ansatz, we need to apply different gate to measure the
expectation. How to choose the gate is based on the expectation of what we want to ask for. In our
project, as the Equation (13), o, is X gate, o, is Y gate, 0. is Z gate in quantom circuit. So, we need
to measure the expectation value of X @ X, Y ®Y, Z® Z, and I. As the Equation(9), (10), and (11),
we have known that

(X)y = [(H[0)? = [(H| D = P, (0) = Py, (1) (18)

Where ¢, = Hy), Py, (0) is the probability that after passing the wave function, the measurement of
qubit is 0, and Py, (1) is the probability that the measurement of qubit is 1. We can use the same
mathematic method to get

(Y)y = [(HS[0)|* — [(HST[1)[* = Py, (0) = Py, (1) (19)

Where 1, = HSTe. [11]

Notice we should apply Hadamard Gate to the qubit before measurement the expectation of Pauli X.
By mathematic theorem[10] , we can easily imply that if we want to measurement the expectation of
(X ® X), we should apply Hadamard Gate on both two qubits. That is

(X @ X)y = [(|00)* + [(w'N1)* — [(&'|01)]* — [(¢'|10)*

= Py(00) + Py (11) — Py (01) — Py (10) (20)



Where I've define ¢/ = (H ® H)v. We can also get

(Y @Y)y = ("[00)* + [("]11)]* = (4" ]01)* — [(z"[10) |*

— Pyo(00) + Pyor(11) = Py (01) — Pyor(10) 2y
Where I've define 1" = (HST @ HST)y. And
(Z @ Z)y = [(|00)|* + [(L[11)[> = [([01)[* = [([10)|? (22)

= P,(00) + Py(11) — Py (01) — P,(10)

And it is clearly to get the expectation of I is 1 without measurement since it just sum all of the
probability .
(D = (100} + [(#[11)[* + [(¥|01)[* + |(¥[10)]?

= Py (00) + Py(11) + P, (01) + Py(10) (23)

=1
In our quantum circuit, it involes ansatz and the gate for expectation measurement. There are some
steps to measure the probability. First, we design the quantum circuit and measure the qubits, we can
obtain the value of qubits. Second, we run this circuit for serveral times, we called it shot number,
and get the different result of measurement. The last, we count the different result by the computer

and finally can get the probability we want. Back to our given Hamiltonian in Equation (12), we want
to obtain the expectation of H. We can rewrite Equation(13)

(Hyy = ~5(X ® X)y— 5(Y @Y}y + 5(Z0 )y + 1 Ty (24)

As mention above the method, we can obtain the expectation.

3.4 Optimization

Notice the Equation(14), the wave function is depand on nine parameters. Because of it, we will get
different expectation with different value of parameters. In our project, our purpose is to get the lowest
expectation, so we need the classical optimizer to help us find it.

4 Results

Our target Hermitian is in Equation(12). Since the eignvalue of given Hermitian are 1 and -1, the
ground state energy Ej is -1. Due to Equation(7), the theoretical value of lowest expectation is -1.
Accroding the VQE method we mention above, Figure 2 shows the quantum circuit we design.
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Figure 2: Quantum Circuit

As the Equation(24) and the general form of ansatz is in Equation(14), there are nine parameters. We
use the optimizer to help us find the lowest expectation of Hermitian in Equation(12). We measure
three times with shot number = 10000. The result are respectively —0.99980, —0.99900, and —0.99940.
The average is —0.99940. The error is 0.060%. The average execution time is 12.1 s.

Then, we notice that both of the shot number and the number of parameters in ansatz will influence
the error and the execution time. To prove this argument, we design a ansatz in Equation(17) which
is only has one parameter and change the shot number to compare it. Each one is averaged after we
measure three times. The result are shown in Tabel 1.



H Number of parameters | shot number | expectation ‘ error ‘ execution time(s) H

9 10000 -0.99940 0.060 % 12.1
100000 -0.99994 0.006 % 66.0
1 10000 -1 0.000 % 1.75
100000 -1 0.000 % 10.97

Table 1: The impact of different number of parameters and shot number on the expectation

Note that ansatz in Equation(17) which is only has one parameter is just we guass since we have
adequate knowledge in the given Hamiltonian. This is not the formal process. We take this ansatz is
just want to show how important designing the ansatz with lower number of parameters is. As we can
see, at the same shot number, lower number can reduce the error and the execution time obviously.
Beside, we can also see that the shot number will influence the error and execution time. We’'ll discuss
later.

5 Discussion

We found in the implementation that the number of shots will affect the error of the lowest eigenvalue.
Here we use another matrix as an example.

M:(0.2524859 0.18121 ) (25)

0.18121 —1.8318639

We set the number of shots from 10,000 to 1 million, and measure the lowest eigenvalue three times
repeatedly, then take the average, and finally calculate the error for comparison.
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Figure 3: The relationship between the number of shots and the error

According to our observations and experiments, the accuracy of this method is related to the
number of shots. It can be seen from the figure that the larger the number of shots, the smaller the
error of the measured data.
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Figure 4: The relationship between the number of shots and the log of error

Then we take the log of error and get the regression line. According to the references section 2.3
[6], the number of shots required for different accuracy can be calculated through formulas. When the
accuracy is high, the number of shots should be correspondingly larger.
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